
Journal of Computational Physics 229 (2010) 2605–2624
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A Legendre spectral element model for sloshing and acoustic analysis
in nearly incompressible fluids

D. Krishna Kishor, S. Gopalakrishnan *, Ranjan Ganguli
Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India
a r t i c l e i n f o

Article history:
Received 21 July 2009
Received in revised form 5 December 2009
Accepted 7 December 2009
Available online 16 December 2009

Keywords:
Legendre polynomials
Acoustic fluids
Sloshing motion
Incompressible locking
Numerical integration
Linear elements
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.12.008

* Corresponding author. Fax: +91 080 3600134.
E-mail address: krishnan@aero.iisc.ernet.in (S. G
a b s t r a c t

A new spectral finite element formulation is presented for modeling the sloshing and the
acoustic waves in nearly incompressible fluids. The formulation makes use of the Legendre
polynomials in deriving the finite element interpolation shape functions in the Lagrangian
frame of reference. The formulated element uses Gauss–Lobatto–Legendre quadrature
scheme for integrating the volumetric stiffness and the mass matrices while the conven-
tional Gauss–Legendre quadrature scheme is used on the rotational stiffness matrix to com-
pletely eliminate the zero energy modes, which are normally associated with the
Lagrangian FE formulation. The numerical performance of the spectral element formulated
here is examined by doing the inf–sup test on a standard rectangular rigid tank partially
filled with liquid. The eigenvalues obtained from the formulated spectral element are com-
pared with the conventional equally spaced node locations of the h-type Lagrangian finite
element and the predicted results show that these spectral elements are more accurate and
give superior convergence. The efficiency and robustness of the formulated elements are
demonstrated by solving few standard problems involving free vibration and dynamic
response analysis with undistorted and distorted spectral elements, and the obtained
results are compared with available results in the published literature.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Fluid elements formulated using Lagrangian frame of reference have displacements as nodal degrees of freedom. The
main advantage of such a formulation is in modeling the fluid–structure interaction problems, where in explicit coupling
of the fluid and the structure degrees of freedom at the fluid–solid interface is not required. Assembly of finite element
matrices and enforcement of multipoint constraints between the fluid and the solid degrees of freedom along the fluid–solid
interface would ensure coupling of the two domains. However, such a procedure would give rise to other problems such as
(i) mesh locking due to fluid incompressibility. (ii) The second problem associated with the Lagrangian finite element for-
mulation is the presence of zero energy modes due to fluid circulation. These zero energy modes enormously increase the
computational cost of the eigenvalue analysis.

Mesh locking in the h-type finite elements is a well researched area. In solids, mesh locking occurs due to shear in rod and
beam elements, membrane locking in curved elements and volumetric locking in nearly incompressible medium. There are
many ways to alleviate the mesh locking in finite elements. The most common method is to make the matrices associated
with the constraint field rank deficient by reduced integration. Refs. [1–6] report these methods for different naturally occur-
ring constraints in the h-type finite elements in solid mechanics. The second method of alleviating mesh locking is through
. All rights reserved.
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field consistent approach [7–9]. Here, the constraint strain fields are smoothed using appropriate Legendre polynomials. This
approach is reported in Refs. [7–9] to handle mesh locking in the h-type solid beam, plate and shell elements to remove lock-
ing due to shear, membrane effects and incompressibility. Papers by authors [10,11] have shown the ability of the field con-
sistent approach to remove mesh locking due to fluid incompressibility in Lagrangian h-type 2-D and 3-D fluid finite
elements. The reported h-type finite elements [1–11] showed algebraic convergence with reduced order Gauss quadrature
on the constrained stiffness matrices, and with full Gauss quadrature on the consistently formulated stiffness matrices.

As mentioned earlier, modeling fluids in displacement-based Lagrangian frame of reference results in large number of
zero energy modes which are attributed to the fluid circulation. These modes are of little interest to an analyst and they con-
tribute to the enormous drain in the computational resources. Refs. [10–15] suggested that these zero energy modes can be
pushed further in the eigenspace by converting them into high frequency rotational modes by making the fluid irrotational.
That is, an additional vorticity vector is introduced in the constitutive model by relating the stress due to fluid irrotationality
with the fluid vorticity by a constant called rotational modulus (R). Although, this procedure eliminates all the zero energy
modes, the vorticity introduced in the constitutive model increases the stiffness of the fluid element further with increase in
R and the low frequency slosh modes are not captured accurately. Since, the rotational constraint is a weak constraint, the
finite element matrices associated with this constraint need to be integrated with an appropriate integration order that can
convert these unwanted zero energy modes to rotational modes. Refs. [10,11] show how such a procedure would give supe-
rior results for the fluid domain modeled using the h-type 2-D and 3-D Lagrangian fluid finite elements. Moreover, the h-type
finite element solution converges at the rate of 1

Npþ1, where N is the total number of degrees of freedom in the model and p is
the polynomial order of the interpolation function used in the element formulation. Hence, for a given polynomial order p,
the fine mesh results in greater value of N, which results in higher convergence rate for a fixed value of p.

The p-version of the finite element formulation is frequently used as an efficient alternative to the h-type finite elements,
since locking effects are avoided a priori [16]. However, in the case of nearly incompressible material behaviour, higher order
Lagrangian fluid elements (p = 2, 3) suffer from volumetric locking phenomena [10,11]. In the p-type finite elements, the spa-
tial domain is discretized with the h-type Lagrangian elements, and the solution accuracy is improved by increasing the poly-
nomial order p of the element shape functions, thereby increasing the number of degrees of freedom in an invariant mesh of
the same elements. For sufficiently smooth problems, p-type elements exhibit highly desirable exponential convergence, i.e.,
error is proportional to e�bN for some constant b [17].

The p-type finite elements uses hierarchical polynomial shape functions [17,28]. For an element of order p, these shape
functions constitute a subset of those for an element of order (p + 1). While such shape functions do not constitute a nodal
basis as Lagrangian interpolants do, they are well suited to adaptive refinement, which is very common in fluid dynamics
[18]. However, hierarchical finite elements do have full mass matrices, which have no satisfactory diagonalization scheme
[19] and in addition diagonal mass matrices are preferred for explicit time integration.

Spectral elements are a new class of finite elements having superior convergence properties. These elements are con-
structed by using Lagrangian interpolation functions which uses either the Legendre, the Chebyshev or the Laguerre polyno-
mials. Spectral finite elements [20] are also p-type finite elements, but their shape functions are formed using the Lagrangian
interpolants with their node point locations at either the (p + 1) Gauss–Lobatto–Chebyshev (GLC) or Gauss–Lobatto–Legendre
(GLL) points. Spectral finite elements combine the accuracy of the global spectral methods [21,22] with the geometric flex-
ibility of the h-type finite elements. Spectral finite elements have been extensively and successfully used in fluid dynamics
[20,23], acoustics [24], and geophysics [25]. However, to the best of author’s knowledge, there has been not any spectral fi-
nite element formulation to model the acoustic fluids in nearly incompressible limit to calculate the slosh and the acoustic
wave motions. This paper constitutes an exploratory study of this application.

One of the main difference between the h-type and the spectral finite elements is that in the case of Legendre spectral
finite elements, the node point locations and the quadrature point locations will be same but, not in the h-type elements.
This coincidence of the node point and the quadrature point locations provides a diagonal mass matrix [25] and this nodal
lumping quadrature [26,27] has also been termed as optimal lumping [6]. Here, we use Gauss–Lobatto–Legendre (GLL) node
locations since these Legendre polynomials are orthogonal with respect to the unity weighting function, whereas Chebyshev
polynomials are not orthogonal to the unity weighting function [31]. Moreover, the Chebyshev points are appropriate for
integration with respect to the 1=ð1� n2Þ1=2 weighting function, not the unity weighting function, and the required order
of quadrature accuracy would not be achieved [32].

This coincident node point and (GLL) quadrature points seem restrictive in some special problems. The authors tried in
the present paper to explore this restrictive nature of the coincident node and the quadrature points. As one could use
the non-nodal quadrature schemes (i.e., Gauss–Legendre), still using the same Legendre spectral element shape functions de-
rived using the (p + 1) GLL points. The authors have tried in the present paper both techniques of using the nodal quadrature
and the non-nodal quadrature schemes for evaluating the finite element matrices. First, (p + 1) � (p + 1) GLL quadrature on
both the stiffness (volumetric and rotational) and the mass matrices for an element with shape function polynomial order of
(p) is employed. Later, the authors have tried mixed quadrature technique, where, the non-nodal quadrature scheme (Gauss–
Legendre (GL)) on the rotational stiffness matrix and the GLL quadrature on the volumetric stiffness and the mass matrices is
employed. These aspects will be looked into great detail in this paper.

As said earlier, mesh locking occurs in the finite elements due to various constraints. One way to measure the locking in
the finite elements is through the patch test or the inf–sup test. If a material is subjected to two constraints, i.e., incompress-
ibility and irrotationality like in the present case, the inf–sup test is a favorable tool to apply. Authors in [10,11] used this inf–
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sup test to find whether the formulated consistent Lagrangian fluid finite elements [10,11] locks in the incompressible limit
as the mesh is refined. The inf–sup test can be a difficult criterion to apply to a new formulation [35–38]. Here, we use this
inf–sup test to study the performance of the newly formulated Legendre spectral finite element under twin constraints
namely incompressibility and irrotationality.

The remainder of this paper is outlined as follows: in Section 2, we derive the formulation of low order h-type Lagrangian
finite elements and the Legendre spectral finite elements for the acoustic wave equation to calculate the sloshing and the
volume change frequencies. In Section 3, we compare the results of the h-type and the Legendre spectral finite elements
in predicting the slosh and the acoustic frequencies followed by the inf–sup test, where the performance of the formulated
elements is evaluated, and the convergence studies and the dynamic analysis is carried out in the succeeding sections. The
paper ends with the conclusions in Section 4.

2. Finite element formulation

In this section, we introduce the formulation of both the h-type and the Legendre polynomials based spectral FE formu-
lation. Since, the h-type FE formulation is quite well known and its application to the fluid problems is reported in [10,11],
we provide only a brief introduction to its formulation here for the sake of completeness. In deriving the governing differ-
ential equations for the fluid, we make the usual acoustic wave theory approximations [12]. That is the fluid motion is as-
sumed to be inviscid, compressible, and adiabatic. Body forces are neglected. Also, the fluid density is taken to be a function
of pressure only (not temperature) so that the density is barotropic.

An important behavior of the fluid system is the ability to displace without a change in the volume. For bounded free sur-
face fluid systems, the free surface of the fluid will move vertically by the so called sloshing waves. These sloshing waves, in a
steady-state condition, involve a harmonic interchange of the kinetic and the potential energy of the fluid system. The rel-
atively low frequency sloshing behaviour of a fluid system involves incompressible modes of displacements which result in
relatively large vertical surface displacements. The total potential energy of the fluid system ðPPÞ, consists of sum of the
strain energy PE, due to compressibility and irrotationality, and the energy due to free surface oscillations of the fluid PS,
which can be written as
PP ¼ PE þPS: ð1Þ
Here
PE ¼
1
2

Z
X
fegT ½C�fegdX ð2Þ
and
PS ¼
1
2

Z
S
qgfusgTfusgdS; ð3Þ
where feg is a strain vector of volumetric, rotational and shear strains which is given as, feg ¼ ½ev ; ez; cxy�
T . Small amount of

shear ðcxyÞ is added to the potential energy of the fluid for stability of the solution [6], and [C] is a diagonal material matrix
given by
½C� ¼
K 0 0
0 R 0
0 0 G

2
64

3
75; ð4Þ
where K is the bulk modulus, R is the rotational modulus and G is the shear modulus of the fluid. The value of R is usually
chosen as 100K as suggested by Wilson and Khalvathi [13] and fusg is the free surface displacement vector of the fluid on the
surface S; q is the mass density of the fluid, g is the acceleration due to gravity and X is the volume of the entire fluid do-
main. The kinetic energy ðPTÞ of the fluid is given by
PT ¼
1
2

Z
X
qfVgTfVgdX; fVgT ¼ f _u; _vg; ð5Þ
where {V} is the velocity vector in cartesian co-ordinates.

2.1. Finite element matrices

The displacement fields u and v in the h-type and the Legendre spectral finite element can be written as
uðx; yÞ ¼
Xq

i¼1

Niðn;gÞui; vðx; yÞ ¼
Xq

i¼1

Niðn;gÞv i; ð6Þ
where q is the number of nodes on each element. Here n and g are the mapped isoparametric co-ordinates and Ni’s are the
shape functions of these elements in the mapped co-ordinates. The strain displacement relation can be written as
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feg ¼ ½B�fd1g; feg ¼ fev ; ez; cxyg
T
: ð7Þ
Here [B] is the strain displacement matrix. The volumetric, rotational and the shear strains are given by
ev ¼
@u
@x
þ @v
@y

� �
; ð8Þ

ez ¼
1
2
@v
@x
� @u
@y

� �
; ð9Þ

cxy ¼
@u
@y
þ @v
@x

� �
ð10Þ
re-writing Eq. (7) as
feg ¼
½BV �
½BR�
½BG�

2
64

3
75fd1g ¼ ½B�fd1g; ð11Þ
where ½BV � is the strain displacement matrix for the volumetric strain, ½BR� is the strain displacement matrix for the rotational
strain and ½BG� is the strain displacement matrix for the shear strain, and fd1g is given as fd1gT ¼ fu1;v1;u2;v2; . . . ;uq;vqg,
where q is the number of nodes in the element.

The discrete form of the governing equations can be obtained by applying the Hamilton’s principle, which can be written
as
d
Z t2

t1

ðPT �PP þWncÞdt ¼ 0; ð12Þ
where Wnc is the non-conservative energy due to applied forces and damping. The discrete equations can be written as
½M�f€ug þ ½K�fug þ ½Ks�fusg ¼ fFg; ð13Þ
where f€ug is the vector of nodal accelerations, fusg is the displacement vector of free surface elements, {F} is the applied force
vector and ½Ks� is the slosh stiffness matrix. The mass matrix [M] and the stiffness matrix [K] are symmetric and banded, and
they are given by
½M� ¼
Z

X
q½N�T ½N�dX; ½K� ¼

Z
X
½B�T ½C�½B�dX: ð14Þ
The diagonal constitutive matrix [C] enables easy splitting of the stiffness matrix [K] into the volumetric stiffness ½KV �, the
rotational stiffness ½KR� and the shear stiffness ½KG� and this is given below,
½K� ¼
Z

X
½BV �T K½BV �dXþ

Z
X
½BR�T R½BR�dXþ

Z
X
½BG�T G½BG�dX;
which can be written as
½K� ¼ ½KV � þ ½KR� þ ½KG�: ð15Þ
The sloshing stiffness matrix is given by
½Ks� ¼
Z

S
qg½Ns�T ½Ns�dS ð16Þ
The surface of the fluid is modeled as a one-dimensional line element. The shape functions ½Ns� are obtained using the
Lagrangian interpolation formula. The slosh stiffness matrix in Eq. (16) is evaluated and added only to the vertical degrees
of freedom of the stiffness matrix in Eq. (15) that correspond to the free surface nodes.

2.2. h-Type finite elements

Here, we derive the h-type finite elements which will be used to evaluate the integrals in Eqs. (14) and (16). The displace-
ment-based Lagrangian interpolation polynomial LjðnkÞ, related to node j and expressed in terms of natural co-ordinates nk,
where k = 1, 2 for two dimensions and k ¼ 1;2;3 for three dimensions are defined by
LjðnkÞ ¼
Ypþ1

i¼1
i–j

ðnk � niÞ
nj � ni

: ð17Þ
An attractive feature of the Lagrangian interpolants is that they constitute a nodal basis, i.e.,
LjðniÞ ¼ dij;
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where dij is the Kronecker delta function. Here, the ðpþ 1Þ nodes are chosen evenly within the element itself. The LjðnkÞ is the
pth-order Lagrangian interpolation polynomial associated with node j. The solution accuracy is increased by increasing the
number of elements in the finite element model while keeping the same interpolation polynomial order (p). In the present
analysis, we have used linear h-type elements [10]. In evaluating the finite element stiffness matrix, different order Gauss-
quadrature is employed and obtained results are compared with newly formulated Legendre spectral element results in Sec-
tion 3.

2.3. Legendre spectral finite elements

In the Legendre spectral finite elements, we use the same Lagrangian interpolation function as used in Eq. (17) for the h-
type finite elements. However, the main difference between these two methods is in the location of the nodes in the finite
element. Here, the (p + 1)-point node locations are at the zeros of the following polynomial equation:
fpðnkÞ ¼ ð1� ðnkÞ2Þ � P0pðn
kÞ: ð18Þ
The zeros of the above equation are identical to the positions of the Gauss–Lobatto–Legendre (GLL) points, where PpðnkÞ de-
scribes the pth order Legendre polynomial with the interval [�1 1], which is given by
Pk
0 ¼ 1; Pk

1 ¼ nk; Pk
2 ¼

1
2
½3 � ðnkÞ2 � 1�; Pk

3 ¼
½5 � ðnkÞ3 � 3 � nk�

2
;

Pk
p ¼
½2 � p� 1�

p
� nk � Pk

p�1 �
½p� 1�

p
� Pk

p�2; p P 2; ð19Þ
where p denotes the polynomial order. These Gauss–Lobatto–Legendre points reduce oscillations of the corresponding shape
functions [29]. They are characterized by the property,
Z þ1

�1

Z þ1

�1
P1

i � P
2
j � P

1
k � P

2
l dn1 dn2 ¼

–0 for i ¼ k; j ¼ l;

¼ 0 else;

�
ð20Þ
where i; j; k; l ¼ 0;1;2; . . . ; p [30]. The 2-D shape functions are obtained by the product of two 1-D shape functions,
Nn ¼ Nijðn1; n2Þ ¼ Liðn1Þ � Ljðn2Þ
with i ¼ 1;2;3; . . . ; pþ 1 and j ¼ 1;2;3; . . . ; pþ 1 for all nodes ‘n’ of each element, where n ¼ 1;2;3; . . . ; ðpþ 1Þ2. The approx-
imation of the kinematic quantities using the above shape functions are given by
xk ¼
Xðpþ1Þ2

n¼1

Nn � xk
n; uk ¼

Xðpþ1Þ2

n¼1

Nn � uk
n;
where k ¼ 1;2 for 2-D cases and k ¼ 1;2;3 for 3-D cases.
An important difference between the h-type finite elements and the Legendre spectral finite elements as discussed in the

introduction is the location of the node points and the quadrature rule. In the Legendre spectral finite elements, the node
points are located at the ðpþ 1Þ Gauss–Lobatto–Legendre points and the same ðpþ 1Þ-point GLL quadrature is employed. Such
quadrature is only exact for polynomials of degree 6 ð2p� 1Þ in 1-D elements [31]. As such, the GLL quadrature scheme is
exact for the stiffness matrices, but constitutes a reduced quadrature scheme for the mass-type matrices [31]. In the case of
2-D finite elements, (p + 1) � (p + 1) GLL quadrature constitutes a reduced quadrature scheme (underintegration) [33]. The
coincident node and quadrature points produce optimally lumped mass-type matrices [6]. In the present paper, we have
considered polynomials up to an order of p = 7 for the spectral finite element formulation. In the h-type finite elements,
the node point locations and the quadrature point locations are different. The node point locations are evenly distributed
within the finite element and the quadrature points are at the zeros of the Legendre polynomials.

3. Numerical experiments

In this section, we calculate the slosh and the acoustic frequencies of the bounded liquid in a rigid rectangular tank using
the spectral element formulation developed in the previous section. The exact slosh frequencies along with their mode
shapes are given by [39]
x2
mn ¼ gk tanhðkhÞ; ð21Þ
where
k2 ¼ p2 m2

b2 þ
n2

a2

� �
and the mode shapes are given by
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d ¼
X1
m¼0

X1
n¼0

Amn cos
mp

b
xþ b

2

� �� �� �
� cos

np
a

zþ a
2

� �� �h i
; ð22Þ
m, n are integers ranging from 0 to 1, and d is the elevation of the liquid and b; a and h are rectangular tank length, breadth
and height, respectively. The acoustic frequencies are given by [12]
x ¼ ck ¼ cp n
b

� �2
þ m

2h

� �2
� �1=2

ð23Þ
and the mode shapes are,
d1 ¼ Ak1 sinðkctÞ cosðk2yÞ sinðk1xÞ;
d2 ¼ Ak2 sinðkctÞ sinðk2yÞ cosðk1xÞ;
where
k1 ¼ np=b; n ¼ 0;1;2;3 . . . ;

k2 ¼ mp=2h; m ¼ 1;3;5 . . .
and
k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 þ k2
2

q
and d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ d2
2

q
; ð24Þ
c is the speed of the acoustic waves and d is the free surface elevation of the liquid.
The dimensions of the tank are as follows: The length b is 5.08 m and height h is 1.905 m, and the finite element discret-

ization of the domain is shown in Fig. 1(a).
The following material properties for the fluid are chosen: K ¼ 2:07� 109 N=m2; R ¼ 100K , and q ¼ 1000 kg=m3. The

acceleration due to gravity g is taken as 9:8 m=s2. Here, we study the behaviour of each Legendre spectral element formu-
lated in Section 2.3 with different shape function polynomial order (p). Using this formulated Legendre element, the fluid
domain shown in Fig. 1(a) is modeled and solved the eigenvalue problem associated with Eq. (13). From the eigenvalue anal-
ysis, the number of zero energy modes, slosh modes, rotational modes, acoustic and the mixed modes are calculated. Rota-
tional constraint is imposed on the Legendre spectral element to reduce or completely eliminate the number of zero energy
modes which are inherent in the fluid elements formulated based on the Lagrangian frame of reference. The effect of rota-
tional constraint on generation of number of specific modes is studied in the following sections, to understand as to what
integration scheme should be applied on the rotational stiffness matrix.
3.1. Effect of numerical integration rule on natural frequencies

In the finite element analysis, the problem domain shown in Fig. 1(a) is discretized with one Legendre spectral finite ele-
ment. We solve the eigenvalue problem associated with Eq. (13) to get the first few slosh and acoustic frequencies. The exact
frequencies of first few slosh and acoustic modes are taken from [10]. They are given here to compare with the FE results
obtained in the following sections. The slosh frequencies are: xsl1 ¼ 2:2385 rad=s; xsl2 ¼ 3:4504 rad=s; xsl3 ¼
Fig. 1. 2-D finite element discretization of rectangular tank with undistorted and distorted spectral elements.
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4:2603 rad=s; xsl4 ¼ 4:9232 rad=s; xsl5 ¼ 5:5047 rad=s; and xsl6 ¼ 6:0310 rad=s, and the acoustic frequencies are xac1 ¼
1185:8 rad=s; xac2 ¼ 1482:2 rad=s; xac3 ¼ 2137:7 rad=s; xac4 ¼ 3557:1 rad=s and xac5 ¼ 3666:7 rad=s.

In the GLL-quadrature, we do not have 1-point quadrature scheme, where the integration order ranges from
i ¼ 2;3;4; . . . ; ðpþ 1Þ. Here, ðpþ 1Þ is the number of node points in the 1-D Legendre spectral finite element. As mentioned
earlier, one of the main drawbacks of the finite elements formulated under Lagrangian frame of reference is the presence of
zero energy modes. The number of these zero energy modes increase as the mesh is refined in the Lagrangian finite element
model, and as the polynomial order (p) of the element shape function is increased in the Legendre spectral finite element
model. Hamdi et al. [15] applied the rotational constraint on the fluid element to convert these zero energy modes into high
order rotational modes. In the next two subsections, we will explore the behaviour of these spectral finite elements with
respect to the quadrature schemes employed (GLL, GL) to evaluate the finite element matrices in Eq. (14).

3.1.1. GLL-quadrature scheme for both volumetric and rotational stiffness matrices
As explained in Section 2, ðpþ 1Þ � ðpþ 1Þ GLL quadrature can be employed on both the stiffness and the mass matrices.

The obtained modes from the finite element analysis are given in Table 1. For the finite element discretization, single Legen-
dre spectral finite element with polynomial order p = 2 is used. Hence for this element model, 3� 3 GLL quadrature on both
the stiffness and the mass matrices is employed. The authors, Hamdi et al. [15], Gopalakrishnan [10] and Kishor et al. [11]
showed that the Lagrangian finite element formulation results in large number of spurious modes in addition to the zero
energy modes, which are difficult to determine by mere inspection. By prescribing irrotationality condition on the displace-
ment field, the zero energy or circulation modes vanish. This constraint is taken into account by a penalty method. The selec-
tion of a large constraint parameter will cause the rotation or vorticity associated with the fluid to go to zero and this in turn
causes the strain energy associated with the rotation to approach zero. Here, we employ different numerical integration or-
der on the rotational stiffness matrix given in Eq. (15) to make it rank deficient to see that the zero energy modes are elim-
inated from the finite element solution without stiffening the element. In the following analysis, we employ ðpþ 1Þ � ðpþ 1Þ
GLL quadrature on the volumetric stiffness and the mass matrices, and vary the GLL quadrature order on the rotational stiff-
ness matrix.

Since, ð1� 1Þ GLL quadrature scheme does not exist, first ð2� 2Þ GLL quadrature is employed on the rotational stiffness
matrix and solved the eigenvalue problem (Eq. (13)) to study the behaviour of the zero energy modes with increase in the
value of rotational constraint parameter R. As the value of R is increased from 0K to 1000K, one zero energy mode is obtained.
One slosh mode is present till R ¼ 10�6K , beyond this value of R, the slosh mode disappears and converts itself into a spurious
mode. The remaining modes will be either acoustic or rotational modes. As the order of the GLL-quadrature on the rotational
stiffness matrix is increased further to ð3� 3Þ, zero energy modes which were present in the previous case are removed. The
behaviour of the slosh modes with increase in the value of R is similar to the previous element model.

In Table 2, we give different mode count generated from the Legendre spectral element with polynomial order p = 3. From
Section 2, it is clear that this element requires ð4� 4Þ GLL quadrature on both finite element stiffness and mass matrices.
First, ð2� 2Þ GLL quadrature is employed on the rotational stiffness matrix, which gives four zero energy modes for the given
range of R. The two slosh modes, which were present at R ¼ 0K reduces to 0 at R ¼ 10�5K . With ð3� 3Þ GLL quadrature four
zero energy modes, which were associated with previous element model, now reduces to one. The pattern of number of slosh
modes obtained with present element model is similar to that of Iv ¼ ð4� 4Þ and Ir ¼ ð2� 2Þ element model.

From the above two tables, it is clearly understood that the two Legendre spectral finite elements with p ¼ 2 and p ¼ 3 are
unable to either remove the zero energy or the spurious modes, in addition to not capturing the slosh modes. In the present
analysis, we increased the GLL quadrature order on the rotational stiffness matrix, from ð2� 2Þ to ð3� 3Þ to study the effect
Table 1
Mode count for polynomial order p = 2, and number of element n = 1, with GLL-quadrature on both volumetric and rotational stiffness matrix.

Iv Ir R Nz Nsl Na Nr Nm Ir Nz Nsl Na Nr Nm Nt

3 � 3 2 � 2 0K 1 1 7 0 0 3 � 3 1 1 7 0 0 9
3 � 3 2 � 2 10�8K 1 1 7 0 0 3 � 3 1 1 7 0 0 9

3 � 3 2 � 2 10�7K 1 1 7 0 0 3 � 3 0 1 7 1 0 9

3 � 3 2 � 2 10�6K 1 1 7 0 0 3 � 3 0 1 7 1 0 9

3 � 3 2 � 2 10�5K 1 0 7 0 1 3 � 3 0 1 7 1 0 9

3 � 3 2 � 2 10�4K 1 0 7 0 1 3 � 3 0 0 7 1 1 9

3 � 3 2 � 2 10�3K 1 0 7 1 0 3 � 3 0 0 7 1 1 9

3 � 3 2 � 2 10�2K 1 0 7 1 0 3 � 3 0 0 7 2 0 9

3 � 3 2 � 2 10�1K 1 0 7 1 0 3 � 3 0 0 6 2 1 9

3 � 3 2 � 2 10�0K 1 0 5 0 3 3 � 3 0 0 3 1 5 9

3 � 3 2 � 2 10þ1K 1 0 4 0 4 3 � 3 0 0 2 1 6 9

3 � 3 2 � 2 10þ2K 1 0 6 2 0 3 � 3 0 0 1 2 6 9

3 � 3 2 � 2 10þ3K 1 0 6 2 0 3 � 3 0 0 3 6 0 9

Note: Iv = integration order of volumetric stiffness matrix, Ir = integration order of rotational stiffness matrix, Nz = number of zero energy modes,
Nsl = number of slosh modes, Na = number of acoustic modes, Nr = number of rotational modes, Nm = number of mixed modes, Nt = total number of modes.



Table 2
Mode count for polynomial order p = 3, and number of element n = 1, with GLL-quadrature on both volumetric and rotational stiffness matrix.

Iv Ir R Nz Nsl Na Nr Nm Ir Nz Nsl Na Nr Nm Nt

4 � 4 2 � 2 0K 4 2 14 0 0 3 � 3 4 2 14 0 0 20
4 � 4 2 � 2 10�8K 4 2 14 0 0 3 � 3 4 2 14 0 0 20

4 � 4 2 � 2 10�7K 4 2 14 0 0 3 � 3 3 2 14 1 0 20

4 � 4 2 � 2 10�6K 4 1 14 0 1 3 � 3 1 2 14 2 1 20

4 � 4 2 � 2 10�5K 4 0 14 0 2 3 � 3 1 1 14 2 2 20

4 � 4 2 � 2 10�4K 4 0 14 1 1 3 � 3 1 0 14 3 2 20

4 � 4 2 � 2 10�3K 4 0 14 2 0 3 � 3 1 0 14 4 1 20

4 � 4 2 � 2 10�2K 4 0 14 2 0 3 � 3 1 0 13 5 9 20

4 � 4 2 � 2 10�1K 4 0 12 1 3 3 � 3 1 0 12 4 3 20

4 � 4 2 � 2 10�0K 4 0 10 0 6 3 � 3 1 0 8 2 9 20

4 � 4 2 � 2 10þ1K 4 0 14 1 1 3 � 3 1 0 7 2 10 20

4 � 4 2 � 2 10þ2K 4 0 14 2 0 3 � 3 1 0 12 6 1 20

4 � 4 2 � 2 10þ3K 4 0 14 2 0 3 � 3 1 0 12 7 0 20

Note: Iv = integration order of volumetric stiffness matrix, Ir = integration order of rotational stiffness matrix, Nz = number of zero energy modes,
Nsl = number of slosh modes, Na = number of acoustic modes, Nr = number of rotational modes, Nm = number of mixed modes, Nt = total number of modes.
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of the rotational constraint on the element behaviour. The Legendre spectral finite element with polynomial order p ¼ 2 and
ð3� 3Þ GLL quadrature on the rotational stiffness shows the ability of predicting one slosh mode which is a fundamental
mode, without generating zero energy modes for very small values of R. However, as the value of R is increased this slosh
mode disappear as given in Table 1. But, when the polynomial order (p) is increased to 3, and with ð3� 3Þ GLL quadrature
on the rotational stiffness matrix, two slosh modes are captured for very small values of R. When R is increased these slosh
modes disappear. At the same time, one zero energy mode is appeared for the given range of R as given in Table 2, and the
number of this zero energy mode increases as the mesh is refined.

From the above analysis, it is clearly seen that the rotational constraint applied in Eq. (7) is not effective in removing all
the zero energy modes. In addition, the rotational constraint with the GLL-quadrature altered some of the slosh modes and
converted them into mixed or spurious modes. The goal of the present paper is to eliminate all the zero energy modes, with-
out altering the accuracy of the slosh and acoustic modes.
3.1.2. GLL-quadrature scheme for the volumetric and Gauss–Legendre quadrature scheme for the rotational stiffness matrix
It is observed in the previous section that the zero energy modes appear in the Legendre spectral finite element model in

spite of enforcing the rotational constraint on the fluid element model using the GLL quadrature, and it did not capture the
slosh modes. This can be explained as, increase in the integration order increases the number of constraints to be satisfied. If
the constraint count, which is the ratio of number of active degrees of freedom to the number of constraints (number of inte-
gration points), becomes less than or equal to one, then the element locks severely [40]. Note that each integration point has
to satisfy two constraints in the present element, namely incompressibility and irrotationality constraints. For the Legendre
spectral element with shape function polynomial order p, there are ðpþ 1Þ nodes and ðpþ 1Þ integration points in 1-D, and in
2-D we have ðpþ 1Þ � ðpþ 1Þ nodes and integration points, respectively. The total number of active degrees of freedom in 2-
D element is 2ðpþ 1Þ2. The number of GLL integration points required for evaluation of the volumetric and the rotational
stiffness matrices will be ðpþ 1Þ2, respectively. Hence the constraint count
Cc ¼
Active degrees of freedom

Total number of constraints
¼ 2ðpþ 1Þ2

2ðpþ 1Þ2
¼ 1:
So, the formulated spectral element with the GLL quadrature on both the stiffness and the mass matrices will lock. The per-
formance of the element can be improved if we reduce the number of constraints, or in other words reduce the number of
integration points. Here, we explain how to reduce the number of integration points in the finite element. Since the rota-
tional constraint is a weak constraint, we can integrate the rotational stiffness matrix by a very small order quadrature rule,
which is just sufficient to convert the circulation modes to rotational modes without making the slosh modes to alter. How-
ever, using the GLL quadrature, we cannot reduce the integration order below ð2� 2Þ. Here, we propose a new procedure
where in the volumetric stiffness and mass matrices are integrated using ðpþ 1Þ � ðpþ 1Þ GLL quadrature, and for the rota-
tional stiffness matrix, one can use the Gauss–Legendre (GL) quadrature. Such a procedure offer tremendous flexibility in
choosing appropriate integration order so that twin objectives of eliminating the zero energy and mixed or spurious modes.
The results and appropriate Gauss–Legendre quadrature rule are given in Tables 3 and 4 for different values of rotational
modulus R.

Table 3 gives the different mode count obtained with the Legendre spectral finite element having interpolation polyno-
mial order p = 2. The numerical integration order required on these finite element matrices is ð3� 3Þ GLL quadrature. It is
observed in the last section that the slosh modes are not captured from the finite element model with the above mentioned



Table 4
Mode count for polynomial order p = 3, and number of element n = 1, GLL-quadrature on volumetric and Gauss–Legendre quadrature on rotational stiffness
matrix.

Iv Ir R Nz Nsl Na Nr Nm Ir Nz Nsl Na Nr Nm Nt

4 � 4 0 � 0 10�9K 4 2 14 0 0 0 � 0 4 2 14 0 0 20

4 � 4 1 � 1 10�8K 4 2 14 0 0 2 � 2 4 2 14 0 0 20

4 � 4 1 � 1 10�7K 4 2 14 0 0 2 � 2 0 2 14 4 0 20

4 � 4 1 � 1 10�6K 3 2 14 1 0 2 � 2 0 2 14 4 0 20

4 � 4 1 � 1 10�5K 3 2 14 1 0 2 � 2 0 2 14 4 0 20

4 � 4 1 � 1 10�4K 3 2 14 1 0 2 � 2 0 2 14 4 0 20

4 � 4 1 � 1 10�3K 3 2 14 1 0 2 � 2 0 2 14 4 0 20

4 � 4 1 � 1 10�2K 3 2 14 1 0 2 � 2 0 2 14 4 0 20

4 � 4 1 � 1 10�1K 3 2 14 1 0 2 � 2 0 2 13 4 1 20

4 � 4 1 � 1 10�0K 3 2 14 0 2 2 � 2 0 2 11 1 6 20

4 � 4 1 � 1 10þ1K 3 2 14 1 0 2 � 2 0 2 13 3 2 20

4 � 4 1 � 1 10þ2K 3 2 14 1 0 2 � 2 0 2 14 4 0 20

4 � 4 1 � 1 10þ3K 3 2 14 1 0 2 � 2 0 2 14 4 0 20

Note: Iv = integration order of volumetric stiffness matrix, Ir = integration order of rotational stiffness matrix, Nz = number of zero energy modes,
Nsl = number of slosh modes, Na = number of acoustic modes, Nr = number of rotational modes, Nm = number of mixed modes, Nt = total number of modes.

Table 3
Mode count for polynomial order p = 2, and number of element n = 1, GLL-quadrature on volumetric and Gauss–Legendre quadrature on rotational stiffness
matrix.

Iv Ir R Nz Nsl Na Nr Nm Ir Nz Nsl Na Nr Nm Nt

3 � 3 0 � 0 10�9K 1 1 7 0 0 0 � 0 1 1 7 0 0 9

3 � 3 1 � 1 10�8K 1 1 7 0 0 2 � 2 1 1 7 0 0 9

3 � 3 1 � 1 10�7K 0 1 7 1 0 2 � 2 0 1 7 1 0 9

3 � 3 1 � 1 10�6K 0 1 7 1 0 2 � 2 0 1 7 1 0 9

3 � 3 1 � 1 10�5K 0 1 7 1 0 2 � 2 0 1 7 1 0 9

3 � 3 1 � 1 10�4K 0 1 7 1 0 2 � 2 0 0 7 1 1 9

3 � 3 1 � 1 10�3K 0 1 7 1 0 2 � 2 0 0 7 1 1 9

3 � 3 1 � 1 10�2K 0 1 7 1 0 2 � 2 0 0 7 2 0 9

3 � 3 1 � 1 10�1K 0 1 7 1 0 2 � 2 0 0 6 1 2 9

3 � 3 1 � 1 10�0K 0 1 7 1 0 2 � 2 0 0 3 0 6 9

3 � 3 1 � 1 10þ1K 0 1 7 1 0 2 � 2 0 0 4 1 4 9

3 � 3 1 � 1 10þ2K 0 1 7 1 0 2 � 2 0 0 5 1 3 9

3 � 3 1 � 1 10þ3K 0 1 7 1 0 2 � 2 0 0 5 4 0 9

Note: Iv = integration order of volumetric stiffness matrix, Ir = integration order of rotational stiffness matrix, Nz = number of zero energy modes,
Nsl = number of slosh modes, Na = number of acoustic modes, Nr = number of rotational modes, Nm = number of mixed modes, Nt = total number of modes.
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quadrature scheme. Here, we apply a different quadrature rule to integrate the stiffness matrices. As stated earlier, we use
the standard GLL quadrature on the volumetric stiffness and the mass matrices and Gauss–Legendre quadrature on the rota-
tional stiffness matrix. Here, we fix the GLL quadrature on the volumetric stiffness and mass matrices and varied the Gauss–
Legendre quadrature on the rotational stiffness matrix, to see the objective of eliminating the zero energy and mixed modes
is achieved. In the Gauss–Legendre quadrature the integration order starts from 1. This ð1� 1Þ Gauss–Legendre quadrature is
employed in the present spectral element to evaluate the rotational stiffness matrix and ð3� 3Þ GLL quadrature is employed
to evaluate the volumetric stiffness matrix. Interestingly, all the zero energy modes which are present at R ¼ 0K are elimi-
nated for higher values of R. In addition to that, one slosh mode is captured. The remaining modes are acoustic and rotational
modes. To investigate further the effect of Gauss–Legendre quadrature on the rotational stiffness, ð2� 2Þ Gauss–Legendre
quadrature is used on the rotational stiffness matrix. The different modes obtained using the above quadrature is also given
in Table 3. With this element model also, the single zero energy mode which is present at R ¼ 0K is eliminated for higher
values of R. However, the slosh mode, which is present at R ¼ 0K , disappears for values of R greater than R ¼ 10�5K . Hence,
it is clear that, for a Legendre spectral finite element with interpolation polynomial order p ¼ 2, ð1� 1Þ Gauss–Legendre quad-
rature is appropriate on the rotational stiffness.

In the next experiment, the polynomial order (p) of the element shape function is increased and calculated different
modes as done with the previous element model. Table 4 gives the different mode count generated from the Legendre
spectral finite element with shape function polynomial order p = 3. When ð1� 1Þ Gauss–Legendre quadrature is employed
on the rotational stiffness matrix, four zero energy, two slosh and 14 acoustic modes are obtained when R ¼ 0K . As the
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value of R is increased to R ¼ 10�6K , four zero energy modes reduced to three and the two slosh modes remain constant
till R ¼ 103K . The remaining modes are either acoustic or rotational or mixed modes. For ð2� 2Þ Gauss–Legendre quadra-
ture on the rotational stiffness, we get no zero energy modes for higher values of rotational modulus ðR > 10�8Þ, and the
two slosh modes obtained at R ¼ 0K does not change with R. The remaining modes are either acoustic or rotational or
mixed modes.

From the above analysis, two aspects are clear. The Gauss–Legendre quadrature not only eliminates all the zero energy
modes, but also completely eliminates the mixed or spurious modes for higher values of rotational modulus i.e., when
R ¼ 103 K . In addition, the number of slosh, rotational and acoustic modes captured follows a specific pattern. If the total
number of modes in the finite element model is Nt , then the number of slosh modes is equal to Nsl ¼ ðp� 1Þ, the number
of rotational modes is Nr ¼ ðp� 1Þ2 and the number of acoustic modes is Nac ¼ Nt � Nsl � Nr , with ðpþ 1Þ � ðpþ 1Þ GLL quad-
rature on the volumetric stiffness and mass matrix and ðp� 1Þ � ðp� 1Þ Gauss–Legendre quadrature on the rotational stiff-
ness matrix.

Table 5 summarizes the numerical results obtained from the spectral finite element solution for various polynomial or-
ders of p. For p = 1 we get no slosh mode, and for p = 7 we get six slosh modes. As the polynomial order p is increased, the
finite element solution approaches the exact solution. This is clearly observed in Table 5. We can also see that if the Legendre
element polynomial order is p, we get ðp� 1Þ low frequency slosh modes. In the above all calculations, we discretized the
fluid system with only one element and used ðpþ 1Þ � ðpþ 1Þ GLL quadrature on the volumetric stiffness and mass matrices,
and ðp� 1Þ � ðp� 1Þ Gauss–Legendre quadrature on the rotational stiffness matrix. The above analysis shows that the pro-
posed spectral element with the GLL quadrature on the volumetric stiffness and the mass matrices, and the Gauss–Legendre
quadrature on the rotational stiffness matrix, not only eliminates the zero energy and mixed modes, but also captures the
acoustic and slosh modes accurately.

3.2. The inf–sup test

The performance of the newly formulated Legendre spectral elements under twin constraints: namely incompressibility
and irrotationality is assessed using the inf–sup test. The inf–sup test is similar to the patch test and is used to test the per-
formance of the element behaviour. The inf–sup test takes into account the mesh density, mesh distortion, integration order
on the constrained matrices and the boundary conditions, and does not take into account the applied loading like the patch
test.

This test essentially transforms the naturally occurring constrained strain fields into an eigenvalue problem given by
Table 5
First few slosh and acoustic frequencies for various polynomial orders of p with number of element n = 1.

Polynomial order (p) Present method ðxSÞ (rad/s) Error (%) Present method ðxaÞ (rad/s) Error (%)

p = 1 1168.1 1.4926
2269.7 53.130

p = 2 2.0691 7.56 1183.60 0.1855
1429.2 3.5757

p = 3 2.2480 0.424 1186.3 0.0421
3.1882 7.5991 1486.2 0.2698

1952.0 8.6869

p = 4 2.2380 0.0223 1186.3 0.0421
3.4845 0.9882 1482.7 0.0337
3.9251 7.8679 2176.8 1.8290

p = 5 2.2386 0.00446 1186.3 0.0421
3.4402 0.2956 1482.9 0.0472
4.3404 1.8801 2130.9 0.3180
4.5514 7.5519 3558.9 0.0506

p = 6 2.2386 0.00446 1186.3 0.0421
3.4506 0.00579 1485.6 0.0472
4.2123 1.1266 2139.0 0.0608
5.0895 3.3778 3559.0 0.0534
5.1799 5.9367 3668.6 0.0518

p = 7 2.2386 0.00446 1186.3 0.0421
3.4504 0 1482.9 0.0472
4.2615 0.0281 2138.7 0.0467
4.8020 2.4618 3559.0 0.0534
5.7961 5.2936 3668.6 0.0518
5.8421 3.1321

Note: xS = slosh frequency, xa = acoustic frequency.
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The inf–sup value k is found from this eigenvalue problem, by taking the first non-zero eigenvalue of the system. For a given
element, the inf–sup value is obtained for various mesh configurations; if this value does not change significantly for various
mesh configurations then the element is said to have passed the test. This test is a critical requirement that any newly for-
mulated element has to satisfy, however not satisfying this requirement is also acceptable for some elements [35].

The inf–sup test is first applied to the formulated Legendre spectral finite element with p = 2. It is observed from Section
3.1.1 and from Table 1, that this element model with ð2� 2Þ and ð3� 3Þ GLL quadrature on the rotational stiffness matrix did
not predict the slosh modes and in the former case, zero energy modes were present. The inf–sup test results corresponding
to this element are shown in Fig. 2(a). It is clear from the figure that the inf–sup value decreases as the mesh is refined. In the
present study, we considered four mesh refinements. Fig. 2(b) shows the inf–sup test results of the spectral element with
polynomial order p = 3 and ð2� 2Þ; ð3� 3Þ GLL quadrature on the rotational stiffness matrix. The corresponding mode count
obtained from this element model are given in Table 2. From this table, it is clear that all the zero energy modes are not elim-
inated as well as the slosh modes are not captured at all. The inf–sup value of this element model also decreases as the mesh
is refined. Clearly, from the above study, these two element models do not satisfy the inf–sup test and reinforces our earlier
argument that these elements behave badly in predicting the slosh modes accurately.

In Section 3.1.2, we have used a different quadrature scheme to integrate the rotational stiffness and derived a relation
between the interpolation polynomial order p of the element shape function and the Gauss–Legendre integration order
which, when used on the rotational stiffness matrix predicted accurate results. With this relation, we could remove all
the zero energy modes and the predicted slosh modes were very accurate. Here, we apply the inf–sup test to these newly
formulated elements. From the relation given in Section 3.1.2, if the interpolation polynomial order is p, then we require
ðp� 1Þ � ðp� 1Þ Gauss–Legendre quadrature on the rotational stiffness. Fig. 3(a) shows the inf–sup test results for the poly-
nomial orders p = 2, 3 with ð1� 1Þ and ð2� 2Þ Gauss–Legendre quadrature on the rotational stiffness matrix respectively. The
calculated inf–sup values does not change significantly as the mesh is refined and we say that these two element models
pass the inf–sup test. However, if the Gauss–Legendre quadrature on the rotational stiffness is increased beyond the value
given by the relation, which is given in Section 3.1.2, again the element behaved very badly. This undesired behaviour is seen
in Tables 3 and 4 and in Fig. 3(b).

The results of the inf–sup test clearly suggest the superiority of the elements that used GLL-quadrature on the volumetric
stiffness and on the mass matrix, and Gauss–Legendre quadrature on the rotational stiffness. We study convergence of these
Legendre spectral finite elements, and use these elements to solve some special problems in the following sections.
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Fig. 2. Inf–sup test results for spectral element with GLL-quadrature rule on both volumetric and rotational stiffness matrices.
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Fig. 3. Inf–Sup test results for spectral element with GLL-quadrature rule volumetric and Gauss–Legendre quadrature rule rotational stiffness matrix.
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3.3. Convergence of the Legendre spectral element

The newly formulated spectral elements performance is analyzed in the present section by studying its convergence rates.
In Fig. 4, comparison of errors in the slosh frequencies obtained by the h-type and the Legendre spectral elements is given.
For the h-type finite element [10], we used linear Lagrange interpolation polynomial with p = 1, and full Gauss–Legendre
quadrature as dictated by the polynomial order (p) is employed in evaluating the stiffness and mass matrices [6,10]. The
number of degrees of freedom in the h-type finite element model is increased by increasing the number of elements whereas,
in the Legendre spectral finite element model, the number of degrees of freedom is increased by increasing the polynomial
order p of the element shape function keeping the number of elements constant. Here, we used only one Legendre spectral
element to model the fluid, and increased the polynomial order (p) of the element shape function. For the comparison, the
Legendre spectral element formulated in Section 3.1.2 is used to calculate the slosh and acoustic frequencies. The error e is
given by
e ¼ jxsl � ~xslj
j ~xslj

;

where ~x denotes the exact value. From Fig. 4, we see the exponential convergence for the spectral finite element solution in
predicting the slosh modes, whereas the h-type finite element solution does not improve with increase in the number of de-
grees of freedom. This behaviour of h-type finite elements is also known as numerical locking in the incompressible limit. We
see that the h-type finite element with full Gauss–Legendre quadrature do not capture the low frequency slosh modes
[10,11]. The authors in [10,11] introduced reduced order Gauss–Legendre quadrature and the consistent formulation on
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the constrained strain fields to remove locking in the incompressible medium. The convergence rates of these locking free h-
type finite elements are also given in Fig. 4. While using the locking free h-type finite elements, ð1� 1Þ Gauss–Legendre quad-
rature is employed on both the volumetric and the rotational stiffness matrices, whereas, ð2� 2Þ Gauss–Legendre quadrature
is employed on the mass matrix. Fig. 4 clearly shows that the Legendre spectral element solution converges exponentially
whereas, reduced quadrature h-type finite element solution shows algebraic convergence.

Fig. 5 shows the convergence rates in the acoustic modes. The same Legendre spectral element formulated in Section 3.1.2
is used for the present analysis also. In the case of h-type finite elements, full and reduced Gauss–Legendre quadrature on the
volumetric and the rotational stiffness matrices yielded similar convergence rates, here only reduced quadrature results are
shown in Fig. 5 to avoid clutter. From Fig. 5, the Legendre spectral elements shows faster convergence rates comparative to
the h-type elements. In the above all results we have employed ðpþ 1Þ � ðpþ 1Þ GLL quadrature to evaluate the volumetric
stiffness and the mass matrices whereas, ðp� 1Þ � ðp� 1Þ Gauss–Legendre quadrature on the rotational stiffness matrix for
Table 6
First slosh frequency for various interpolation polynomial orders (p) with two undistorted and distorted spectral elements.

Polynomial order (p) Exact (rad/s) Undistorted element (rad/s) Distorted (b1 = 3.0 m) (rad/s) % deviation

p = 2 2.2385 2.2337 2.6891 20
p = 3 2.2385 2.2386 2.3215 3.7
p = 4 2.2385 2.2386 2.2421 0.1
p = 5 2.2385 2.2386 2.2386 0.004
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Fig. 6. Behaviour of slosh frequencies as a function of distorted element length b1, for p = 3.
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the Legendre spectral finite element model. From the above convergence studies, it can be said that the Legendre spectral
element solution converges exponentially for smooth solutions.

3.4. Spectral element behaviour with distorted element mesh

The effect of geometric distortion and polynomial order (p) of the Legendre spectral element on the slosh frequencies is
studied in the present section. First, for a set value of distorted element, behaviour of the slosh mode is studied for increasing
value of element polynomial order (p). The distorted finite element model is shown in Fig. 1(b); with b1 = 3.0 m, and this
comes to 18% distortion of the actual single element length (b/2) in the tank model. The calculated slosh frequencies for var-
ious values of interpolation polynomial order (p) of the spectral element are given in Table 6. From the above analysis, it is
understood that as the polynomial order (p) of the distorted element is increased, the stiffness is estimated more closely to
the undistorted element and this in turn leads the obtained results to move close to the exact and undistorted element re-
sults. In the second experiment, for a set value of element polynomial order (p = 3, 4), behaviour of the slosh modes is studied
for different values of distorted element length ðb1Þ. From the finite element solution with p = 3, we get four slosh modes.
The normalized slosh frequencies with exact results are given in Fig. 6. The percentage of distortion considered in the ele-
Fig. 8. Tall water column problem and its finite element discretization, l = 0.0508 m, L = 0.508 m, K ¼ 2:18� 109 Pa and q ¼ 999 kg=m2.
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ment length b1 is given on the abscissa. As the percentage of distortion in the Legendre spectral element is increased, first
three slosh modes showed small deviation from the exact results, whereas, the higher slosh mode (slosh mode-4) became
spurious. If the polynomial order p is increased to 4, we get six slosh modes. As shown in Fig. 7, deviation of first four slosh
modes is very small as the percentage of distortion in the element length is increased. In this case also, the higher slosh mode
(slosh mode-6) became spurious which is not shown here. From the above study, as the polynomial order of the element
shape function (p) is increased, distortion in the element has small effect on the first few slosh modes.

3.5. Natural frequencies in a tall water column

The accuracy and robustness of the present Legendre spectral finite element formulation is studied by solving an eigen-
value problem associated with a tall water column. Bathe [12] has calculated the acoustic frequencies in a tall water column
using the h-type finite elements he has developed in [12]. In the present paper, the authors want to model the same tall
water column with the same properties considered in [12] and compare our finite element results with that of results ob-
tained in [12] by Bathe. Fig. 8 shows the ‘‘tall water column problem” and the fluid properties considered are bulk modulus K
is 2:18� 109 Pa, density of the fluid q is 999 kg=m3. The height of the column is much higher than its width and has a free
surface (pressure = 0). The exact solution to this problem is given in Eq. (23) by Bathe [12].

Fig. 8 shows the finite element mesh used to model the tall water column. In the present study, we used Legendre spectral
finite element with element shape function interpolation polynomial order p = 2. Here, the problem is modeled with one,
four and eight Legendre spectral elements respectively. In the analysis done by Bathe [12], the tall water column problem
was discretized with 8-noded h-type Lagrangian finite elements. Table 7 compares the analytical and the finite element re-
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Fig. 9. Spurious acoustic mode-1 (142.22 rad/s), ‘‘. . .” shows mode shape and ‘‘–” shows initial geometry, with R ¼ 10�5K .

Table 7
Analytical and FE solutions of acoustic frequencies of a tall water column with full GLL quadrature rule on both volumetric and rotational stiffness matrices with
R ¼ 100K .

Mode# Analytical
solution

FE [12] (80-elem)
(rad/s)

Present method (1-elem)
(rad/s)

Present method (4-elem)
(rad/s)

Present method (8-elem)
(rad/s)

1 4566 4567 4557.2 4567.1 4567.7
2 13698 13760 12855 13507 13694
3 22830 22890 82222 22668 22700

Table 8
Effect of rotational modulus R on FE solutions of acoustic frequencies in a tall water column with full GLL quadrature rule on both volumetric and rotational
stiffness matrices.

Mode# Analytical solution
(rad/s)

Present method (8-elem)

R ¼ 10�5K

Present method (8-elem)

R ¼ 10�2K

Present method (8-
elem) R ¼ K

Present method (8-elem)

R ¼ 102K

1 4566 142.22 4464.9 4567.7 4567.7
2 13698 167.80 4567.7 13694.0 13694.0
3 22830 184.48 5205.5 22700.0 22700.0
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sults obtained from both the present formulation and Bathe’s [12] formulation, which are in excellent agreement even for
single element analysis. The tall water column problem allows us to examine the importance of the irrotationality parameter
in the displacement-based finite element analysis of fluid frequencies. Table 8 shows the first three acoustic modes calcu-
lated by the formulated spectral finite element for different rotational modulus (R) on fluid particle rotations. Note that these
modes do not represent physical modes for low rotational modulus ðR ¼ 10�5KÞ as seen from Figs. 9–11.

As the rotational modulus (R) is increased to 100K, the acoustic modes tend to the exact values. These first three true
acoustic mode shapes are shown in Figs. 12–14, and since gravity and sloshing motions are not included in the present anal-
ysis, the displacement patterns represent volume change patterns of the length of the tall water column [12–15].

3.6. Dynamic analysis of liquid partially filled in a rigid rectangular tank

In this section, we study the behaviour of the newly formulated Legendre spectral element in dynamic analysis. We con-
sider a rigid rectangular tank partially filled with water having dimensions of b ¼ 0:9 m and h ¼ 0:6 m as the width and li-
quid height, respectively. The exact fundamental slosh frequency of this system is 5:75912 rad=s, and from the present finite
element calculation with element polynomial order p = 3 and single element, it is 5:7639 rad=s. The finite element model is
given in Fig. 15. The fluid system is subjected to a sinusoidal external acceleration as given below,
€xðtÞ ¼ �ðx0x2Þ sinðxtÞ for t P 0;
where x0 and x are the amplitude and frequency of the forced sinusoidal displacement, respectively. The parameters x0 and
x are taken as 0.002 and 5:5 rad=s, respectively [34]. These particular values have been considered to just compare our finite
element formulation results with the already published standard test case results [34]. A time history analysis with linear,
small deflection theory is carried out. The constant-average-acceleration Newmark time marching scheme with a time step
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Fig. 11. Spurious acoustic mode-3 (184.48 rad/s), ‘‘. . .” shows mode shape and ‘‘–” shows initial geometry, with R ¼ 10�5K.
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Fig. 10. Spurious acoustic mode-2 (167.80 rad/s), ‘‘. . .” shows mode shape and ‘‘–” shows initial geometry, with R ¼ 10�5K.
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of Dt ¼ 0:02 s is used. The computed free surface vertical displacements (sloshing wave height) for the tank is shown in Figs.
16 and 17. It is observed from Fig. 16 that the present Legendre spectral finite element results compare well with the Bound-
ary element method (BEM) results of Nakayama et al. [34]. Since the sloshing motion is antisymmetric with respect to the
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Fig. 14. True acoustic mode-3, x ¼ 22700 rad=s, ‘‘. . .” shows mode shape and ‘‘–” shows initial geometry, with R ¼ 102K.
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Fig. 13. True acoustic mode-2, x ¼ 13694 rad=s, ‘‘. . .” shows mode shape and ‘‘–” shows initial geometry, with R ¼ 102K .
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Fig. 12. True acoustic mode-1, x ¼ 4567:7 rad=s, ‘‘. . .” shows mode shape and ‘‘–” shows initial geometry, with R ¼ 102K.
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vertical symmetric axis, the free surface displacements at the left and right corner will be out of phase by 180�. From Fig. 17,
it is observed that the free surface displacements at the left and right corners are exactly antisymmetric and maximum ver-
tical displacements occurs at these points.
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Fig. 16. Free surface vertical displacement near wall of the rectangular tank under sinusoidal base excitation, €x ¼ �x0x2 sinðxtÞ; ðx0 ¼ 0:002 m;

x ¼ 5:5 rad=sÞ.
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Fig. 17. Free surface vertical displacement at various points of the rectangular tank under sinusoidal base excitation, €x ¼ �x0x2 sinðxtÞ; ðx0 ¼
0:002 m; x ¼ 5:5 rad=sÞ.

Fig. 15. 2-D finite element discretization of rectangular tank with p = 3 and b = 0.9 m, h = 0.6 m.
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Fig. 18. Free surface vertical displacements near wall of rectangular tank under sinusoidal base excitation, €x ¼ �x0x2 sinðxtÞ; ðx0 ¼ 0:002 m;

x ¼ 5:5 rad=sÞ, and b = 0.9 m, b1 ¼ 0:5 m and h = 0.6 m.
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3.6.1. Dynamic analysis of liquid with distorted elements
In the present section, the formulated Legendre spectral element behaviour is studied with geometric distorted elements

in the dynamic analysis. The considered distorted element shape function polynomial order p is 3. The distorted finite ele-
ment model is given in Fig. 1(b); with b = 0.9 m, h = 0.6 m, and b1 = 0.50 m this comes to 11% distortion of the actual single
element length in the tank model. The comparison of slosh wave heights at the left corner of the rectangular tank between
the undistorted and distorted elements with Nakayama et al. [34] results is given in Fig. 18. It is observed from Fig. 18, that
the dynamic free surface heights obtained from the distorted elements with p = 3 follows the trend obtained with undis-
torted elements and with the Nakayama et al. [34] results. From the above study, we can say that the formulated element
is also able to show good behaviour with distorted elements in dynamic analysis.
4. Conclusions

A Legendre spectral finite element model is developed to model the acoustic fluids to calculate the slosh and the acoustic
modes in incompressible limit. Legendre spectral finite elements have their shape functions obtained by the Lagrangian
interpolants with node locations at ðpþ 1Þ GLL points. Here, Legendre spectral finite element node locations and GLL quad-
rature point locations are coincident. For the Legendre spectral finite element volumetric stiffness and mass matrices, Gauss–
Lobatto–Legendre (GLL) quadrature is used for the numerical integration, while for the rotational stiffness matrix, use of
Gauss–Legendre (GL) quadrature gives superior results. The zero energy modes which are inherently present in the Legendre
spectral finite element model are completely converted into high order rotational modes by reduced order Gauss-Legendre
quadrature on the rotational stiffness matrix. From the present study, the ideal value of rotational parameter (R) will be be-
tween 102K and 104K for accurate slosh frequencies.

Comparison of natural frequencies obtained by the h-type finite elements and the Legendre spectral finite elements reveal
that the spectral finite element solution is more accurate than the h-type finite element solution. Moreover, this Legendre
spectral finite elements give exponential convergence rates. From the present analysis, we derived the following relation:
if the fluid domain is modeled with an element having interpolation polynomial of order p, then the Legendre spectral finite
element solution produces ðp� 1Þ slosh modes, ðp� 1Þ2 rotational modes and Nt � ðp� 1Þ � ðp� 1Þ2 acoustic modes, where
Nt is the total number of modes present in the finite element model. This specific pattern in different modes is achieved if the
spectral element is integrated with ðpþ 1Þ � ðpþ 1Þ GLL quadrature on the volumetric stiffness and the mass matrices, and
ðp� 1Þ � ðp� 1Þ Gauss–Legendre quadrature on the rotational stiffness matrix. Clearly, the formulated spectral elements with
above mentioned quadrature rule satisfies the inf–sup test and are free of locking.
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